Hcluwin: an Algorithm for Clustering Heterogeneous Data Streams over Sliding Windows

نویسندگان

  • Jiadong Ren
  • Changzhen Hu
  • Ruiqing Ma
چکیده

Many applications in web usage mining, such as business intelligence and usage characterization, require effective and efficient techniques to discover the users with similar usage patterns and the web pages with correlate contents in the physical world. Clustering click streams can help to achieve the goal. Despite the high processing rate, the existing methods for clustering click streams over sliding widows suffer from the missing of categorical attributes in click stream data. In this paper, we present HCluWin, an approach for clustering heterogeneous data streams which contain both continuous attributes and categorical attributes over sliding windows. A Heterogeneous Temporal Cluster Feature (HTCF) is introduced to monitor the distribution statistics of heterogeneous data points. Based on this structure, Exponential Histogram of Heterogeneous Cluster Feature (EHHCF) is presented. Simultaneously, a new similarity measure between two heterogeneous objects is proposed. Experimental results show that the clustering quality of HCluWin is higher than CluWin and the stream processing rate of HCluWin is higher than HCluStream.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mining Recent Frequent Itemsets in Sliding Windows over Data Streams

This paper considers the problem of mining recent frequent itemsets over data streams. As the data grows without limit at a rapid rate, it is hard to track the new changes of frequent itemsets over data streams. We propose an efficient one-pass algorithm in sliding windows over data streams with an error bound guarantee. This algorithm does not need to refer to obsolete transactions when 316 C....

متن کامل

Mining Frequent Patterns in Uncertain and Relational Data Streams using the Landmark Windows

Todays, in many modern applications, we search for frequent and repeating patterns in the analyzed data sets. In this search, we look for patterns that frequently appear in data set and mark them as frequent patterns to enable users to make decisions based on these discoveries. Most algorithms presented in the context of data stream mining and frequent pattern detection, work either on uncertai...

متن کامل

A Novel Ensemble Approach for Anomaly Detection in Wireless Sensor Networks Using Time-overlapped Sliding Windows

One of the most important issues concerning the sensor data in the Wireless Sensor Networks (WSNs) is the unexpected data which are acquired from the sensors. Today, there are numerous approaches for detecting anomalies in the WSNs, most of which are based on machine learning methods. In this research, we present a heuristic method based on the concept of “ensemble of classifiers” of data minin...

متن کامل

Research on Sliding Window Join Semantics and Join Algorithm in Heterogeneous Data Streams

Sliding windows of data stream have rich semantics, which results all kinds of window semantics of different data stream, so join semantics between the different types of windows becomes very complicated. The basic join semantic of data streams, the join semantic of tuple-based sliding window and the join semantic of time-based sliding window have partly solved the semantics of stream joins, bu...

متن کامل

DENGRIS-Stream: A Density-Grid based Clustering Algorithm for Evolving Data Streams over Sliding Window

Evolving data streams are ubiquitous. Various clustering algorithms have been developed to extract useful knowledge from evolving data streams in real time. Density-based clustering method has the ability to handle outliers and discover arbitrary shape clusters whereas grid-based clustering has high speed processing time. Sliding window is a widely used model for data stream mining due to its e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010